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The solution of viscous incompressible jet flows using
non-staggered boundary fitted co-ordinate methods
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SUMMARY

A new approach for the solution of the steady incompressible Navier–Stokes equations in a domain
bounded in part by a free surface is presented. The procedure is based on the finite difference technique,
with the non-staggered grid fractional step method used to solve the flow equations written in terms of
primitive variables. The physical domain is transformed to a rectangle by means of a numerical mapping
technique. In order to design an effective free solution scheme, we distinguish between flows dominated
by surface tension and those dominated by inertia and viscosity. When the surface tension effect is
insignificant we used the kinematic condition to update the surface; whereas, in the opposite case, we
used the normal stress condition to obtain the free surface boundary. Results obtained with the improved
boundary conditions for a plane Newtonian jet are found to compare well with the available two-
dimensional numerical solutions for Reynolds numbers, up to Re=100, and Capillary numbers in the
range of 05CaB1000. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The presence of one or more free surface boundaries complicates the analysis of many fluid
flows of practical interest. Analytical solutions of free surface flow problems are virtually
non-existent, and increasingly, numerical methods are being employed to predict local flow
properties. Like the unknown pressure and velocities, the shape and the position of the
boundary must be determined as part of the solution. The flow characteristics at steady state
are interesting from a practical point of view. Perturbations are imposed on steady state
conditions in order to study flow instabilities [1–4]. Since the die swell has a direct influence
on the dimensions of the final product in processes like extrusion, fiber spinning, and blow
molding, it is necessary to obtain a fundamental understanding of the die swell phenomenon
in order to ensure successful design and operation of the processes.
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The Newtonian jet swell flow is a benchmark problem to test the accuracy and robustness
of numerical techniques. The flow is steady and incompressible and it is governed by the momentum
and continuity equations with the boundary conditions of no-slip at the wall and no-stress at
the free surface. The inflow and outflow boundaries are taken at distances L1, L2, sufficiently
far from the jet exit so that the flow is fully developed far upstream from the inlet plane of the
free section, and uniform at the outlet plane of the jet (Figure 1).

The shapes of Newtonian jets emerging from a long die depend only on two dimensionless
parameters, the Reynolds number and the Capillary number (Re and Ca respectively), when gravity
is neglected. In general, the die-swell ratio Co decreases as Reynolds number increases. The jet
expands monotonically for low Re and contracts monotonically at high Re. The limit of the Co
for a planar jet at infinite Reynolds number without surface tension is 0.833 (Tillet [5]). Surface
tension is also important; in general, it reduces either expansion or contraction of the jet.

In the past many approaches have been devised yielding successful numerical solutions of steady
free surface jet flows. Depending on the boundary condition that is used to locate the boundary
profile, these iterative procedures are classified as kinematic iteration, normal–stress iteration,
and shear–stress iteration schemes.

Finite element methods with primitive variables have been used frequently to solve the flow,
e.g., Ruschak [6], Nickell et al. [7]. Heretofore, most of these schemes employed low-order finite
elements for the spatial discretization, while the energy and momentum equations with proper
boundary conditions are solved in a coupled manner. When low-order finite elements are used,
the representation of the free boundary is often inadequate and splines are sometimes introduced
to evaluate more accurately geometric quantities, such as curvatures and slopes.

The spectral element formulation has been applied successfully to this flow (Ho and Rønquist
[8]), wherein a fast convergence in space is achieved due to the inherent high-order spatial
discretization (a characteristic of the spectral formulation).

Finite difference methods with co-ordinate transformation, e.g., Han et al. [9], Yiu and Liu
[10], have been used to solve the jet-well when the streamfunction–vorticity formulation describes
the flow equations. However, this method is limited to two-dimensional flow problems.

Figure 1. Slot jet flow geometry in the physical plane.
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In this paper, we develop and demonstrate a technique for incorporating free boundary
conditions with surface tension using primitive variables. This study follows that of Pacheco
and Peck [11], but it differs in that the procedure used to locate the free surface boundary is
extended and convergence is improved for both high and low Capillary numbers. The
equations prescribing the free surface conditions are derived and the technique based on the
non-staggered grid fractional step method given by Zang et al. [12] is employed to solve the
equations in discretized form. The boundary fitted co-ordinate method developed by Thomp-
son et al. [13] was adopted to map the flow geometry into a rectangle and a local orthogonality
at the free surface was achieved by using the method described by Steger and Sorenson [14].

The numerical method is attractive because it is second-order accurate in both space and
time. The accuracy is unaffected by grid orientation. Also, the method can be used to solve
three-dimensional problems and unsteady flows.

The following sections contain the governing equations, the implementation of the boundary
conditions, a summary of the fractional step method, and results from the different test cases.

2. GOVERNING EQUATIONS

In this study we consider viscous incompressible flow of a Newtonian fluid, with density r and
viscosity m in a two-dimensional domain V. The domain boundary G (Figure 1) is decomposed
as G0@Gs@Gs@Gin@Gout with no-slip boundary conditions imposed on G0, symmetry im-
posed on Gs, fully developed Poiseuille flow velocity on Gin, uniform velocity over the entire
cross-section Gout, and traction boundary conditions imposed on Gs. In the following, the
physical space is denoted by (x1, x2)= (x, y) and the computational space (j1, j2)= (j, h).

The equations governing the flow are the Navier–Stokes and continuity equations, which
are presented in the constant viscosity and constant density form. Using Einstein’s convention,
the governing equations are written as

(uj
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where i, j=1, 2; ui represents the Cartesian velocity components; p is the pressure (relative to
zero ambient pa ; n is the kinematic viscosity; gi represents the gravity components; and tij is the
stress tensor defined as

tij= −pdij+m
�(uj

(xi

+
(ui

(xj

�
(9)

where dij is the Kronecker delta. On the free surface Gs, s is the free surface tension coefficient,
ni is the outward unit normal, 9i is the surface gradient operator, and k is the curvature in
two-dimensional geometry and twice the mean curvature in three-dimensional geometry. The
curvature along a surface co-ordinate is considered positive if the liquid region below the free
surface is concave along that surface co-ordinate.

Far downstream from the die exit, uout is the uniform velocity, and at a distance far
upstream, uin is the velocity of the fully developed Poiseuille flow, given by

uin= −
1

2m

(p
(x

(h2−y2) (10)

where h is the height measured from the symmetry plane. Equations (1) and (2) are
transformed into curvilinear co-ordinates in strong conservation law form as
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where J−1 is the inverse of the Jacobian or the volume of the cell; Um is the volume flux
(contravariant velocity multiplied by J−1) normal to the surface of constant jm ; and Gmn is the
‘mesh skewness tensor’. These quantities are defined by

Um=J−1 (jm

(xj

uj (13)
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3. BOUNDARY CONDITIONS

As the free surface geometry deforms from an initial state, the dominant physical effect that
causes this deformation needs to be identified. The three major physical forces that influence
the free surface behavior are inertia, viscous, and surface tension forces. Since the surface
tension contribution is directly involved in the normal traction boundary condition on the free
surface, it is important to distinguish between flows dominated by surface tension from those
dominated by inertia or viscosity so that we can design an effective steady state free surface
solution scheme. The non-dimensional groups that indicate the relative strength of these
surface forces are the Reynolds number (inertia versus viscous effects)

Re=
rUL

m
(16)

where L and U are the characteristic length and velocity respectively; the capillary number
(viscous versus surface tension effects)

Ca=
mU
s

(17)

and the Weber number (inertia versus surface tension effects)

W=
rLU2

s
(18)

The correct free surface boundary conditions are the balance of the normal and tangential
stress and the kinematic condition. Balancing momentum between two fluids gives

t¦ijnj−t %ijnj= −skni (19)

The curvature k=1/R1+1/R2, where R1 and R2 are the radii of curvature of the orthogonal
plane containing the unit normal to the surface n. In order to apply the appropriate boundary
conditions at the free surface we have written the following identity in the chain rule
conservation form:

J−1 (uk

(xi

=
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(jj

T ij (20)
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where

Tkj=J−1 (jk

(xj

(21)

to get the derivatives for the velocities in the computational domain. For a two-dimensional
surface, assuming that the external fluid (taken to be a gas here) is stress free, we can express
the shear–stress balance in terms of the computational variables as

(u
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Similarly, the normal stress balance can be expressed in terms of the computational variables
with the reference pressure pa=0 as
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if we let C1=m(ny
2−nx

2)J, C2=2mnxnyJ, C3=2mnx
2J, C4=2mnxnyJ, C5=2mny

2J, and 1/R( =k.
Here, nx and ny are the components of the unit vector normal to the surface in the x- and
y-directions respectively. The kinematic condition implies that there is no mass flux through
the free surface; therefore, the contravariant velocity at the face of the cell is identically zero

V= ûT21+ 6̂T22=0 (24)

The conditions at the inlet are of Dirichlet type and therefore do not require special
manipulation. Along the line of symmetry, we can use Equation (20) to change the derivatives
from the physical domain to the computational domain. At the outlet, the conditions u=uout

and 6=0 are replaced by (u/(x=0 and (6/(x=0, and transformed to the computational
domain using Equation (20).

4. DISCRETIZATION

The non-staggered grid layout is employed in this analysis. The pressure and the Cartesian
velocity components are defined at the cell center and the volume fluxes are defined at the
mid-point of their corresponding faces of the control volume in the computational space. We
use a semi-implicit time-advancement scheme with the Adams–Bashforth method for the
explicit terms and the Crank–Nicolson method for the implicit terms, as described by Zang et
al. [12] and Pacheco and Peck [15]. Here, we will just describe how to apply numerically the
boundary conditions at the free surface.
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We assume that the relation between the velocity at the boundary and the velocities next to
the face can be written as

û=
ui, j+1+ui, j

2
(25)

6̂=
6i, j+1+6i, j

2
(26)

If we consider the derivatives at the free surface are located at the center of the cell face, we
can approximate the derivatives as
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(x

=
du
dj

T11+
du
dh
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where the velocities with an overbar are the velocities at the corners of the cell, which have
been interpolated from the velocities at the center of the cell face using a quadratic interpola-
tion scheme (Pacheco and Peck [11]). Similar expressions can be obtained for the vertical
velocity components.

In order to simplify the form of the equations that will be used for the calculation of the free
surface, we define the following expressions:

Aux=C3Ti, j
11 +C5Ti, j

12 (29)

A6x=C4Ti, j
12 +C5Ti, j

11 (30)

Auy=C3Ti, j
21 +C5Ti, j

22 (31)

A6y=C4Ti, j
22 +C5Ti, j

21 (32)

and

Bux=C1Ti, j
12 +C2Ti, j

11 (33)

B6x=C1Ti, j
11 −C2Ti, j

12 (34)

Buy=C1Ti, j
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21 (35)
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21 −C2Ti, j

22 (36)
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If the normal stress balance is used to update the free surface, it can be shown that velocities
outside the boundary are

ui, j+1=

[(ūi+1, j− ūi, j)Ti, j
22Bux+ (6̄i+1, j− 6̄i, j)Ti, j
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When the shear–stress balance and normal stress balance are satisfied, the velocities at the
imaginary nodes have the following expressions:
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the kinematic condition is then used to update the free surface boundary.
For the particular geometry presented here, the mean curvature is given by

1
R( =

hxx

(1+hx
2)3/2 (41)

where h is the distance from the mid-plane of symmetry and the subscript x denotes
differentiation with respect to x as shown in Figure 1.

Following Ryskin and Leal [16], Pacheco and Peck [11] obtained the steady shape of a free
surface in their solution scheme via an interative process in which the imbalance between the
total normal stress and pressure for a given estimated shape of the interface is used to obtain
an improved shape for the next iteration, i.e., a shape for which condition (23) is nearly
satisfied. An alternative for improving the boundary profile is to consider the local excess of
total normal stress
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which produces a local displacement of the surface in the direction of the force. Correcting the
displacement in terms of a function h(x), we can use

h(x)n+1=h(x)n+vPn (43)

to update the values for x and y, which are used as the necessary boundary conditions to
determine the mapping. The relaxation parameter v has to be found by numerical experiment.
The displacement of the boundary points must occur in a direction that reduces the violation
of global conservation of mass in the current flow field.

The first solution method examined in this work uses the kinematic condition to update the
boundary of the free surface. After the flow field has been calculated, a new free surface is
determined from the kinematic condition. In differential form, it is

dhn+1

dx
=
6̂n+1

û n+1 (44)

with boundary conditions hn+1=1 at x=0.
Kinematic iteration simply means that after a flow field has been calculated, a new free

surface shape is determined from the kinematic condition. Solving the governing equations (11)
and (12) with boundary conditions (3) and (4) requires us to specify an initial guess of the
position of the free surface. At this point, we have not demanded in the boundary conditions
that there be zero velocity flux across the free surface, we iterate in the following way: Let
h(x)n be the proposed free surface, then the updated free surface h(x)n+1, where

h(xj)n+1=h(xj−1)n+1+
& xj

xj−1

6̂n+1

û n+1 dx (45)

with h(x)n+1=hin. Here û n+1 and 6̂n+1 are the velocities on h(x)n being determined from the
solution of the governing equations at the nth iteration.

The use of the normal stress iteration scheme is an alternative way to calculate new meniscus
locations h(x)n+1 after the n+1th approximation to the flow has been calculated for flows
with high surface tension.

New profiles are generated from the discretized form of

d
dx

� hx

(1+hx
2)1/2

n
=

1
s

[(ūi+1, j− ūi, j)Aux+ (6̄i+1, j− 6̄i, j)A6x+ (6i, j+1−6i, j)A6y

+ (ui, j+1−ui, j)Auy ]−
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s

p (46)
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The boundary conditions for Equation (46) are

h(0)=1 (47)

and

hx(L2)=0 (48)

Requiring in the kinemtic case that 6=0 at x=L2 in the flow field calculation ensures
that hx(L2)=0 if Equation (44) is satisfied. We can integrate Equation (46) to obtain hx on
the free surface starting from the end of the jet L2 (Figure 1). Once hx is obtained, we can
integrate hx starting from the separation point at x=0 to determine the position of the free
surface.

5. NUMERICAL PROCEDURE

We solve the governing equations that describe the fluid motion in the transformed plane
by the finite difference method. The step-by-step procedure is as follows:

1. Choose some initial shape of the free surface.
2. Apply the appropriate boundary conditions for the free surface by iterating on either

Equations (37) and (38) in step 3 or Equations (39) and (40) in step 4 to obtain convergent
velocities at the free surface.

3. Normal stress iteration:
� compute the normal stress and check if it is zero; if Equation (23) is not satisfied,

modify the interface shape so as to reduce the imbalance between the pressure and the
viscous stress.

4. Kinematic condition:
� calculate the amount of mass that is crossing the free surface; if the amount of mass that

is crossing the boundary is greater than a prefixed tolerance, update the free surface
using Equation (45).

5. Solve for the flow field using the fractional step method.
6. Return to step 2 until steady state is reached.
7. Compute the approximate boundary fitted co-ordinate system taking the new position of

the free surface as boundary conditions.
8. Return to step 2 and repeat until all equations and boundary conditions are satisfied up to

a prescribed accuracy.

Convergence was achieved when the relative change in field values between the ith iteration
and the i+kth iteration reached a prescribed tolerance (k]1). The stopping criteria for all
cases was set to 1.0×10−4.
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6. RESULTS AND DISCUSSION

The results reported here are restricted to Re5100 and Ca51000. In order to have a solution
independent of the length we have chosen the values of L1 and L2 such that the change in the
length will not affect the solution. We found that L1=4 was adequate for the ranges of Re and
Ca numbers presented here; whereas L2=25 was adequate for ReB20, L2=105 for Re=100.
Also, the number of grid points was selected in a way that the swell ratio did not change when
increasing the number of grid points. The grid size was reduced from a coarse to a finer mesh,
so that the swell ratio beyond this mesh size remained unaffected by any change in the grid
structure. The results are presented in Table I for Ca=1000 and two different values of Re.
The corresponding computational cost increases substantially as the number of discrete mesh
points increases; therefore, for all calculations reported here, the number of grid points ranged
from 225×25 to 525×25.

In order to check the computer code we have considered first a particular case of the
two-dimensional jet when the fluid has infinite surface tension (Ca=0) and zero Reynolds
number. The velocities at the slip plane and centerline were compared with the exact solution
given by Richardson [17] as well as the pressure variation along the centerline of the flow. The
predictions agreed within 2 per cent. Figure 2 shows the values of the different terms in the
normal stress condition as well as the shape of the jet for Ca=0.01 and Re=0.

The shapes of the numerically simulated jet determined by different numerical approaches
are given in Figure 3. The jet swell ratio, Co, based on the present simulation is 1.167, whereas
a value of 1.19 was obtained by Ruschak [6], 1.180 by Yu and Liu [10], and 1.160 by Pacheco
and Peck [15]. The pressure contour plot for the creeping Newtonian jet is shown in Figure 4.
The jet reaches its final thickness at a downstream length x=2.

The numerical errors for the conditions at the free surface (the amount of mass that is
crossing the free surface and the imbalance of the normal stress and shear–stress) are the local
residuals, which are the left-hand side of the discretized equations subtracted from the
right-hand side at each grid point along the free surface.

The creeping jet swell ratio predicted by the present method is lower than the finite element
method and finite difference method with streamfunction–vorticity formulation. However, the
errors for the conditions at the free surface close to the die lip are lower than those reported

Table I. Effects of mesh refinement on swell ratio with Ca=1000.

Grid points CoRe

125×25 17.30
225×25 16.7
525×25 16.7

1525×50 16.7

−10.3100225×25
−13.7425×25

525×25 −14.2
−14.21525×50
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Figure 2. Components of the normal stress and residue for Re=0 and Ca=0.01 at the free surface.
–�–, free surface; –�–, residue P; –�-, pressure p ; –2–, viscous part �—p.

Figure 3. Comparison of the surface shapes for creeping Newtonian jet with Ca=1000: –�– Ruschak
[6]; –�– Yu and Liu [10]; –2– normal stress condition, Pacheco and Peck [11]; –�– kinematic

condition (present).
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Figure 4. Pressure contours for the creeping Newtonian jet and Ca=100.

by other researchers. The lack of agreement among the results reported by different researchers
using different methods can be explained by the lack of accuracy in satisfying the boundary
conditions at the exit of the die lip. The information propagates downstream all the way to the
region of the flow considered uniform, affecting the amount of contraction or expansion of the
jet flow.

Tables II, III and IV compare the numerical errors for the conditions at the free surface of
this work and Liu et al. [18] for different values of Reynolds and Capillary numbers. In our
method, the errors presented for the normal stress and shear stress conditions are of the same
magnitude as those reported by Liu et al. [18]; however, the condition in the divergence at the
separation point obtained with the method proposed here yields better results than those
presented elsewhere.

The maximum error in the normal stress balance occurs at the separation point as shown in
Figures 5–7 for different cases, but the residuals decay rapidly along the jet free surface and
are of order 10−6.

Table II. A comparison of errors on the jet surface with Re=0, Ca=1000.

PresentLiu et al. [18]

txx txyx txx txy 9 · u 9 · u

8.41 · 10−2 1.86 · 10−4 1.31 · 10−41.3 · 1000.1 4.3 · 1014 7.2 · 10−2

−5.5 · 10−1 7.78 · 10−2 −1.49 · 10−5 5.56 · 10−50.2 3.8 · 10−4 −3.2 · 10−2

5.29 · 10−2 −3.50 · 10−60.3 3.5 · 10−5 −4.5 · 10−3 −1.4 · 10−1 2.45 · 10−5

−3.69 · 10−63.80 · 10−2 1.48 · 10−5−1.0 · 10−10.4 5.8 · 10−5 −1.7 · 10−3

−2.56 · 10−6 3.14 · 10−60.5 6.3 · 10−5 −6.4 · 10−4 −6.4 · 10−2 1.82 · 10−2

1.25 · 10−2 −1.73 · 10−60.6 3.2 · 10−5 −3.0 · 10−4 −4.2 · 10−2 4.99 · 10−7

−1.49 · 10−68.48 · 10−3 −1.72 · 10−6−2.8 · 10−20.7 2.9 · 10−7 −1.3 · 10−4

−2.0 · 10−2 3.74 · 10−3 −6.39 · 10−7 −3.48 · 10−60.8 −1.0 · 10−6 −7.6 · 10−5

2.44 · 10−3 −4.31 · 10−70.9 −7.6 · 10−6 −7.0 · 10−5 −1.4 · 10−2 −4.09 · 10−6

−4.51 · 10−61.56 · 10−3 −3.31 · 10−7−1.0 · 10−21.0 −2.7 · 10−6 −6.9 · 10−5

−4.2 · 10−3 2.19 · 10−4 −3.89 · 10−81.3 2.0 · 10−8 −4.57 · 10−6−4.3 · 10−5

1.78 · 10−4 7.55 · 10−81.6 −8.3 · 10−7 1.4 · 10−5 −1.4 · 10−3 −3.63 · 10−6

8.06 · 10−8−1.56 · 10−6 −2.34 · 10−6−5.0 · 10−32.0 −1.9 · 10−8 −7.5 · 10−6

−2.0 · 10−5 −2.24 · 10−7 9.60 · 10−93.5 −8.2 · 10−9 −1.31 · 10−6−4.4 · 10−6

−1.16 · 10−10 1.78 · 10−97.0 7.9 · 10−10 −8.5 · 10−7 −6.0 · 10−5 −8.56 · 10−9

−6.0 · 10−5 −8.6 · 10−9 −2.26 · 10−109.5 −7.3 · 10−9 2.80 · 10−9−1.0 · 10−7
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Table III. A comparison of errors on the jet surface with Re=1, Ca=1000.

x Liu et al. [18] Present

9 · utxxtxy9 · utxxtxy

1.1 · 100 8.4 · 10−2 1.8 · 10−4 1.3 · 10−40.1 8.6 · 10−2 7.1 · 10−4

−5.1 · 10−1 7.7 · 10−2 1.4 · 10−5 5.5 · 10−50.2 −3.1 · 10−2 4.8 · 10−4

5.2 · 10−21.7 · 10−4−4.6 · 10−30.3 2.4 · 10−53.5 · 10−6−1.3 · 10−1

7.3 · 10−5−1.8 · 10−30.4 −1.0 · 10−1 1.4 · 10−53.8 · 10−2 3.6 · 10−6

0.5 −6.1 · 10−2−5.9 · 10−4 5.2 · 10−6 3.1 · 10−61.8 · 10−2 2.5 · 10−6

4.9 · 10−71.7 · 10−61.2 · 10−2−4.0 · 10−2−2.3 · 10−5−2.6 · 10−40.6
8.4 · 10−3 1.4 · 10−60.7 −1.8 · 10−4 −1.5 · 10−5 −2.8 · 10−2 1.7 · 10−6

0.8 −1.3 · 10−4 −1.5 · 10−5 −1.9 · 10−2 3.7 · 10−3 3.4 · 10−66.3 · 10−7

−1.4 · 10−2 4.0 · 10−64.3 · 10−72.4 · 10−3−6.3 · 10−6−1.2 · 10−40.9
3.3 · 10−71.5 · 10−3−1.0 · 10−2 4.5 · 10−66.7 · 10−6−1.4 · 10−41.0

2.0 −3.2 · 10−5 1.1 · 10−6 8.6 · 10−4 2.1 · 10−4 3.8 · 10−8 4.5 · 10−6

3.8 · 10−8 4.5 · 10−63.0 3.0 · 10−6 −3.6 · 10−8 5.0 · 10−4 2.1 · 10−4

4.5 · 10−63.8 · 10−82.1 · 10−4−1.1 · 10−4−6.9 · 10−9−3.7 · 10−64.0
3.8 · 10−82.1 · 10−4−1.1 · 10−4 4.5 · 10−63.5 · 10−103.0 · 10−75.0

−5.9 · 10−5 2.1 · 10−4 3.8 · 10−86.0 −6.8 · 10−6 4.5 · 10−65.1 · 10−10

3.8 · 10−8 4.5 · 10−67.0 −2.2 · 10−6 6.0 · 10−10 −3.0 · 10−5 2.1 · 10−4

−2.7 · 10−5 2.1 · 10−4 3.8 · 10−88.0 1.4 · 10−5 4.5 · 10−6−9.5 · 10−10

9.0 −4.4 · 10−6 3.6 · 10−6−5.0 · 10−10 7.5 · 10−81.7 · 10−4−7.0 · 10−6

−3.8 · 10−6 1.1 · 10−10−8.5 · 10−9−1.7 · 10−5−1.2 · 10−810.0 1.7 · 10−9

The vector plot of the velocities for Re=100 and Ca=1000 is presented in Figure 8. It is
clear that the velocity downstream is not uniform at L2=14; however, we can use the
radiation boundary condition for the velocities in the spanwise direction without requiring to
increase the length of the jet. We have experimented with both types of boundary conditions
and the results are almost identical. Table V shows the jet swell for values of the capillary
number between 0 and 1000 when the Reynolds number is 0. The jet expands monotonically
at low Re. The predicted free surface profiles for different Ca numbers are presented in Figure
9. The results show how the jet expands monotonically at low Re as Ca increases. The effect
of Re on the shape of the free surface is shown in Figure 10. The jet contracts at high Re.
Table VI presents the jet swells for Reynolds numbers up to 100 when surface tension is
negligible.

In our computation scheme, the mass imbalance must be minimized at each time step in
order to relocate the free surface boundary to its final position in the steady state solution.
Therefore, in applying the kinematic scheme we set the volume flux leaving the free surface
boundary to be within 1 per cent of the total volume flux leaving the die lip. This condition
restricts the movement of the free surface to low values, causing slow convergence. In addition,
the method uses a pseudo-transient approach to reach steady state.
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Table IV. A comparison of errors on the jet surface with Re=100, Ca=1000.

Liu et al. [18] Presentx

9 · u txy txxtxy 9 · utxx

4.5 · 10−42.1 · 10−5 8.1 · 10−55.2 · 10−10.1 8.7 · 10−2 1.5 · 10−2

−1.6 · 10−1 2.3 · 10−5 2.3 · 10−4 3.9 · 10−50.2 −8.0 · 10−2 1.7 · 10−2

2.2 · 10−5 1.4 · 10−40.3 −6.6 · 10−2 −2.7 · 10−3 −8.3 · 10−2 1.5 · 10−5

8.6 · 10−51.8 · 10−5 9.5 · 10−6−1.0 · 10−10.4 −4.4 · 10−2 −1.3 · 10−2

−9.2 · 10−1 1.6 · 10−5 1.1 · 10−4 1.6 · 10−50.5 −2.0 · 10−2 −1.4 · 10−2

1.5 · 10−5 7.3 · 10−50.6 8.0 · 10−3 −8.7 · 10−3 −5.2 · 10−2 8.1 · 10−6

9.3 · 10−51.3 · 10−5 1.2 · 10−51.3 · 10−20.7 3.4 · 10−2 −3.8 · 10−4

7.9 · 10−66.6 · 10−50.8 5.0 · 10−2 7.0 · 10−3 8.5 · 10−2 1.2 · 10−5

1.0 · 10−5 7.7 · 10−50.9 4.5 · 10−2 1.0 · 10−2 1.3 · 10−1 1.0 · 10−5

6.4 · 10−59.8 · 10−6 8.4 · 10−61.5 · 10−11.0 3.0 · 10−2 1.0 · 10−2

6.9 · 10−2 3.1 · 10−6 6.0 · 10−5 1.0 · 10−62.0 1.2 · 10−2 2.1 · 10−5

1.3 · 10−6 1.6 · 10−53.0 −3.0 · 10−3 1.1 · 10−4 2.6 · 10−3 2.6 · 10−6

8.9 · 10−56.2 · 10−7 4.9 · 10−5−1.4 · 10−14.0 2.7 · 10−3 −5.9 · 10−5

3.2 · 10−7 4.0 · 10−55.0 −4.8 · 10−3 8.3 · 10−5 −9.7 · 10−2 7.5 · 10−6

1.9 · 10−7 1.6 · 10−56.0 1.0 · 10−2 2.2 · 10−4 −2.6 · 10−1 3.5 · 10−6

1.1 · 10−61.2 · 10−7 9.2 · 10−5−1.9 · 10−17.0 −7.8 · 10−3 −2.0 · 10−4

8.0 · 10−7 1.4 · 10−58.0 1.6 · 10−2 −4.0 · 10−5 7.4 · 10−2 2.9 · 10−6

5.6 · 10−63.0 · 10−55.0 · 10−8−1.6 · 10−49.0 −2.9 · 10−2 −3.0 · 10−4

2.2 · 10−2 3.7 · 10−8 −3.0 · 10−6 1.6 · 10−710.0 1.5 · 10−2 9.6 · 10−5

Figure 5. Components of the normal stress and residue for Re=0 and Ca=1000 at the free surface.
–�–, free surface profile; –2–, residue �; –�–, pressure p ; –�–, viscous part II—p.
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Figure 6. Components of the normal stress and residue for Re=0 and Ca=1 at the free surface. –�–,
free surface profile; –2–, residue �; –�–, pressure p ; –�–, viscous part II—p.

Figure 7. Components of the normal stress and residue for Re=100 and Ca=1000 at the free surface.
–�–, free surface profile; –�–, residue �; –2–, pressure p, –�–, viscous part �—p.
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Figure 8. Vector plot of the jet flow for Re=100 and Ca=1000.

Table V. Percentage swell at Re=0.

00.0111000Ca
12.4 0.03Co 016.7

Figure 9. Effect of capillary number for Re=0 on the free surface profiles. Profile –�–, Ca=1000;
–2–, Ca=1; –�–, Ca=0.01.
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Figure 10. Effect of Reynolds number for Ca=1000 on the free surface profiles. Profiles –�–, Re=0;
–�–, Re=1; –�–, Re=10; –�–, Re=20; –2–, Re=100.

Table VI. Percentage swell at Ca=1000.

Re 0.0 100.01.0 20.010.0
Co −8.54 −14.2−2.212.016.7

7. CONCLUSIONS

We have developed a finite difference technique to calculate free surface flows for high and low
capillary numbers and Reynolds numbers up to 100. The mathematical problem is formulated
in primitive variables and solved using the fractional step method for non-staggered grids
adapted from Zang et al. [12]. The numerical solutions for all test cases compare well with
other published results. The numerical method accommodates non-orthogonal grids. Accurate
predictions of the Newtonian jet problem were obtained for different values of Re and Ca. To
the author’s knowledge this is the first solution of the jet swell problem using finite differences
with grid transformation and primitive variables and using both kinematic and normal stress
schemes to locate the surface boundary. Future refinements to solve the pressure-Poisson
equation are needed to improve the speed and precision of the results. A promising new
technique has been developed for simulating an important class of flow problems.
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APPENDIX A. NOMENCLATURE

specified constantsAux, A6x
specified constantsAuy, A6x
specified constantsBux, B6x
specified constantsBuy, B6y
Capillary numberCa
specified constantsCj

swell ratioCo
mesh skewness tensorGmn

gravitational accelerationg
height measured from the symmetry planeh

i iteration level
JacobianJ
positive integerk
characteristic lengthL
length of the downstream regionL1

L2 length of the upstream region
vector normal to the free surfaceni

pressurep
atmospheric pressurepa

radii of curvatureR1, R2

R( average radius of curvature
Reynolds numberRe
timet
Cartesian tensor times the JacobianTij

characteristic velocityU
U, V volume flux in the j, h co-ordinates

volume fluxUm

Cartesian velocity at the cellui, (u, 6)
Cartesian velocity defined at the center-face of the cellûi, (û, 6̂)
Cartesian velocity defined at the corner of the cellūi, (ū, 6̄)

xi, (x, y) Cartesian co-ordinates
Weber numberW
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Greek letters

dij Kronecker delta
curvaturek

dynamic viscositym

kinematic viscosityn

fluid densityr

s surface tension
stress tensortij

normal stresstxx

txy shear stress
relaxation parameterv

curvilinear co-ordinatesjm, (j, h)
domain boundaryG
domain boundary (inlet)Gin

domain boundary (outlet)Gout

domain boundary (symmetry)Gs

domain boundary (no-slip)G0

domain boundary (traction)Gs

excess in local normal stressP
domainV

Subscripts and superscripts

i, j indices for the Cartesian co-ordinates or vector quantities
inletin
indices for the curvilinear co-ordinatesm, n
index of time stepn
outletout

s symmetry
x-directionx
first derivative in the x-direction
second derivative in the x-directionxx
y-directiony

0 no-slip boundary condition
traction boundary conditions
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